2021全球氣候狀況報告中英對照(影片、圖片、數據)

  The WMO State of the Global Climate in 2021 – English

 2022年5月中旬,聯合國「世界氣象組織」(World Meteorological Organization, WMO)  發布《2021年全球氣候報告》(The State of the Global Climate 2021),嚴重訊息是溫室氣體濃度、海平面上升、海洋暖化和海洋酸化等四項關鍵指標在2021年都創下新高紀錄。並呈現過去7年是有紀錄以來最熱的7年,在在顯示地球已經是個「熱鍋」,但人們似乎還不像「熱鍋上的螞蟻」有危機感,照樣過著耗能、耗水、耗資源、高排碳的生活。

該報告綜合參考了多個聯合國機構、國家氣象水文部門以及科學專家的意見。報告強調極端氣候事件對糧食安全和人口流離失所的影響,對關鍵生態系統的損害,以及對實現永續發展目標進展的破壞。

為了讓更多人輕鬆瞭解《2021年全球氣候報告》內容,做好應對氣候變遷危機的努力,同時可作為環境教育的背景知識或宣導材料,我將該報告網站上幾乎所有內容都翻譯了,以中英對照方式呈現,請參考:  


關鍵訊息   Key Messages 

2021年的全球平均溫度比1850至1900年工業化前的平均溫度高出約1.11 ± 0.13 °C。由於年初及年末的反聖嬰現象,2021 年與最近幾年比起來較不熱些。但2015至2021這7年是有紀錄以來最熱的7年。

The global mean temperature in 2021 was around 1.11 ± 0.13 °C above the 1850–1900 pre‑industrial average. This is less warm than in some recent years due to the influence of La Niña conditions at the start and end of the year. The most recent seven years, 2015 to 2021, were the seven warmest years on record. 

全球平均海平面在2021年達到新高位,在2013至2021年間平均升高4.5毫米/年。

The global mean sea level reached a new record high in 2021, rising an average of 4.5 mm per year over the period 2013–2021. 

南極的臭氧層破洞在2021年達到最大面積2,480萬平方公里。這個異常深大的臭氧洞是由強大而穩定的極地漩渦和低層平流層比平均溫度還低的條件所驅動。

The Antarctic ozone hole reached a maximum area of 24.8 million km 2 in 2021. This unusually deep and large ozone hole was driven by a strong and stable polar vortex and colder-than-average conditions in the lower stratosphere. 

格陵蘭島在8月中旬經歷了一次特殊的融化事件,並且在海拔3,216公尺的格陵蘭冰蓋最高點「峰頂觀測站」出現了有史以來的首次降雨。

Greenland experienced an exceptional mid-August melt event and the first-ever recorded rainfall at Summit Station, the highest point on the Greenland ice sheet at an altitude of 3,216 m. 

極端熱浪使得北美及地中海地區都破高溫紀錄。7月9日,美國加利福尼亞州死亡谷的氣溫達到54.4°C,與1930年代以來在2020年創下的世界最高溫紀錄相同。8月11日,西西里島錫拉丘茲附近的一個農業氣象站測到48.8°C,創下歐洲暫時的最高溫紀錄。

Exceptional heatwaves broke records across western North America and the Mediterranean. Death Valley,
California reached 54.4 °C on 9 July, equalling a similar 2020 value as the highest recorded in the world since at least the 1930s, and Syracuse in Sicily reached 48.8 °C. 

北大西洋季節最嚴重的災害颶風是艾達。艾達於8月29日在路易斯安那州登陸,是該州有紀錄以來的最強颶風(譯按:持續1分鐘的風速達240公里/小時),造成嚴重的風災和水災。該天氣系統朝東北方向前進,持續造成嚴重的洪水災情,尤其是在紐約市地區。美國的經濟損失估計為750億美元。

Hurricane Ida was the most significant of the North Atlantic season, making landfall in Louisiana on 29 August, equalling the strongest landfall on record for the state, with economic losses in the United States estimated at US$ 75 billion. 

致命和代價高昂的洪水在中國河南省造成177億美元的經濟損失,西歐在7月中旬經歷了有記錄以來最嚴重的洪水,導致德國經濟損失超過200億美元。(譯按:7月20日,鄭州市一小時降雨量201.9毫米(創下中國國家紀錄),6小時降雨量382毫米,總降雨量720毫米,超過河南年均雨量。嚴重的山洪暴發,淹沒許多建築物、道路和地鐵。)

Deadly and costly flooding induced economic losses of US$ 17.7 billion in Henan province of China, and Western Europe experienced some of its most severe flooding on record in mid‑July. This event was associated with economic losses in Germany exceeding US$ 20 billion. 

乾旱影響了世界許多地區,包括加拿大、美國、伊朗、阿富汗、巴基斯坦、土耳其和土庫曼斯坦等地區。 在加拿大,嚴重干旱導致小麥和油菜產量比2020年少了35%–40%;而在美國,科羅拉多河流域的米德湖水位在7月下降到低於滿水位47公尺,是有紀錄以來的最低水位。

Drought affected many parts of the world, including areas in Canada, the United States, the Islamic Republic of Iran, Afghanistan, Pakistan, Turkey, and Turkmenistan. In Canada, severe drought led to forecast wheat and canola crop production levels being 35%–40% below 2020 levels, while in the United States, the level of Lake Mead on the Colorado River fell in July to 47 m below the full supply level, the lowest level on record. 

新冠肺炎大流行進一步加劇了因軍事衝突、極端氣候事件和經濟衝擊的複合影響,破壞了幾十年來在改善全球糧食安全上取得的進展。

The compounded effects of conflict, extreme weather events, and economic shocks, further exacerbated by the COVID-19 pandemic, undermined decades of progress toward improving food security globally.  

水文氣象災害持續導致很多國家的人民流離失所。截至2021年10月,流離失所人數最多的國家是中國(超過140萬)、越南(超過664,000)和菲律賓(超過600,000)。

Hydro-meteorological hazards continued to contribute to internal displacement. The countries with the highest numbers of displacements recorded as of October 2021 were China (more than 1.4 million), Viet Nam (more than 664,000), and the Philippines (more than 600,000).  


 


溫室氣體:  Greenhouse Gases 

大氣中溫室氣體的濃度反映了溫室氣體量在人類活動與自然來源排放跟吸存之間的增減。人類活動造成大氣中溫室氣體含量的增加是驅動氣候變化的主要因素。

The atmospheric concentrations of greenhouse gases reflect a balance between emissions from human activities, sources, and sinks. Increasing levels of greenhouse gases in the atmosphere due to human activities are a major driver of climate change. 

儘管 COVID-19 疫情讓人類活動稍微頓挫,但實際數據顯示,2021年全球溫室氣體排放量還是持續增加。

Despite setbacks from COVID-19, real-time data indicate that global greenhouse gas emissions continued to increase in 2021. 

溫室氣體排放前三名  The Big 3

二氧化碳 (CO2)是最具代表性的溫室氣體,甲烷(CH4)與一氧化二氮(N2O)對氣候變遷影響也很大。

2021年大氣中溫室氣體濃度達到新高峰:
二氧化碳 (CO2)有 418.81ppm,是工業化前的1.5倍。
甲烷(CH4)有1889±2ppb,是工業化前的2.62倍。
一氧化二氮(N2O)有332.0±0.1ppb,是工業化前的1.23倍。

Carbon dioxide (CO 2 ) is the most commonly addressed greenhouse gas, and its atmospheric concentration is measured by parts per million (ppm). Methane (CH 4 ) and nitrous oxide (N 2 O) are also extraordinarily important for the global climate and are measured by parts per billion (ppb).

Carbon dioxide: 418.81ppm = 150% of preindustrial levels
Methane: 1889±2 ppb = 262% of preindustrial levels
Nitrous oxide: 333.2±0.1 ppb = 123% of pre-industrial levels.

 

 Greenhouse Gas Bulletin – October 2021 – English 

主要溫室氣體二氧化碳、甲烷和一氧化二氮的大氣濃度在2020和2021年持續增加。2020年人類雖因新冠肺炎疫情減少活動而使化石燃料用量下降了5.6%,連帶減少了二氧化碳排放量,但該三種溫室氣體的增長率仍高於過去十年的平均值。

Atmospheric concentrations of the major greenhouse gases, carbon dioxide, methane, and nitrous oxide, continued to increase in 2020 and 2021. The growth rate of all three greenhouse gases in 2020 was above the average for the last decade despite a 5.6% drop in fossil fuel CO2 emissions 2020 due to restrictions related to the COVID-19 pandemic. 

臭氧   Ozone

儘管成功簽訂《蒙特婁議定書》,但大氣中某些已禁用的化合物仍長期存在,在8月至12月期間仍強力破壞南極洲上空的臭氧層,形成所謂的「臭氧破洞」。

2021年的破洞比1979年以來的加大加深達70%,最大面積達到2,480萬平方公里。

Despite the success of the Montreal Protocol, the long lifetime of certain discontinued chemical compounds in the atmosphere means that there is still enough of them to cause complete destruction of the ozone over Antarctica between August and December, creating what is known as the “ozone hole”.

The 2021 hole was larger and deeper than 70% of ozone holes since 1979, reaching a maximum area of 24.8 million km 2 .

 

 影片顯示2021/07/01-12/31南極上空臭氧層破洞狀態,深藍色區域就是破洞。 


全球地表均溫   Global Mean Surface Temperature

溫室氣體濃度上升,全球地表均溫(GMST)也跟著上升。 GMST的測量是結合陸地上(二公尺)的氣溫和(來自各種數據庫的)海洋表面溫度,通常以跟基準期比較後的差異值呈現。

As greenhouse gas concentrations rise, so does global mean surface temperature (GMST). GMST is measured using a combination of air temperature over land, and sea surface temperature in ocean areas typically expressed as an anomaly from a baseline period.  

2021地表均溫與1981至2010年均溫比較圖(顏色愈紅表示升溫愈多) 

2021年,全球溫度比工業化前基準(1850-1900年)高出1.11±0.13℃。

儘管反聖嬰現象降溫條件正在形成,2021年較前幾年不熱些,但過去 7 年(2015-2021)仍然是有紀錄以來最熱的7年。  

In 2021, GMST (was 1.11 ± 0.13 °C warmer than the pre-industrial baseline (1850-1900).

Given La Niña cooling conditions, 2021 was cooler than in recent years but the past 7 years are still the warmest on record. 


降水  Precipitation

與溫度相比,降水在空間和時間尺度上有更大的變化。

Compared to temperature, precipitation is characterized by higher spatial and temporal variability.  

 2021降水量與1951至2010平均降雨量比較圖(綠色愈深表示降水愈多) 

2021年降水量偏多的地區主要有東歐、東南亞、海洋大陸、南美北部和北美東南部地區。(譯註:「海洋大陸」指中南半島、菲律賓群島、印尼群島、新幾內亞島等眾多島嶼和中國南海及一系列淺海組成的區域,處於太平洋、印度洋、亞洲、大洋洲的連接地帶。)

同時,降雨不足的地區則有西南亞和中東、南部非洲的部分地區、南美南部和北美中部。

In 2021, large areas with above-normal precipitation were Eastern Europe, Southeast Asia, the Maritime Continent, areas of northern South America, and south-eastern North America.

Meanwhile, regions with rainfall deficit included southwest Asia and the Middle East, parts of southern Africa southern South America, and central North America.  


海洋熱含量:  Ocean Heat Content

由於溫室氣體濃度的增加(譯按:導致無法將熱逸散到太空),大約90%積聚在地球系統中的多餘熱能會進到海洋。海洋熱含量(OHC)就是這種熱量積累的量度值,是在海洋各種深度(最深達到2000公尺)進行測量。

所有數據都顯示,在過去的二十年中,海洋的升溫速率呈現特別劇烈的增長。 

2021年,全球海洋0~2000m深度的升溫創歷史新高,比2020年高出14±9 澤焦耳

Around 90% of the excess energy that accumulates in the earth system due to increasing concentrations of greenhouse gases, goes into the ocean. 

Ocean Heat Content (OHC) is a measure of this heat accumulation in the Earth system. It is measured at various ocean depths, up to 2000m deep.

All data sets agree that ocean warming rates show a particularly strong increase in the past two decades.

In 2021, the 0–2000m depth layer of the global ocean reached a record high, exceeding the 2020 value by 14±9 ZJ

 此圖呈現1960-2021年全球海洋熱含量(OHC)相對於基準期2005-2017年0-300公尺(灰色)、0-700公尺(藍色)、0-2000公尺(黃色)和700-2000公尺(綠色)深度層的差異值和標準差(2-sigma,陰影部分)。


海平面上升:  Sea Level Rise

2021年,全球平均海平面再創新高。然而,海平面的上升高度並非到處一樣:區域性海平面變化的模式主要由海洋熱含量和鹽度的局部變化所主導。

In 2021, the global mean sea level reached a new record high.

However, sea level does not rise equally everywhere: regional patterns of sea-level change are dominated by local changes in ocean heat content and salinity. 

1993-2020區域海平面上升高度與全球海平面平均高度差比較圖  紅色愈深表示上漲愈高(單位:公釐、毫米/年) 

 全球平均海平面升降變化比較,1993年1月至2022年1月全球海平面每年平均上升3.33±0.4毫米,1993年1月至2002年12月全球海平面每年平均上升2.1公釐,2003年1月至2012年12月全球海平面每年平均上升2.9公釐,到了2013年1月至2022年1月全球海平面每年平均上升速率急遽提升到4.5公釐 

 海平面上升速率推估以及對人類生活的影響  Credit: NASA Climate Change 


海洋酸化   Ocean Acidification

二氧化碳濃度上升的影響之一是海洋酸化。海洋吸收了每年人為排放到大氣中的23%二氧化碳,雖有助於減輕氣候變化的影響,海洋生態卻要付出慘痛代價。

One impact of rising CO2 concentration is ocean acidification. The ocean absorbs around 23% of the annual emissions of anthropogenic CO2 to the atmosphere, helping to alleviate the impacts of climate change but at a high ecological cost to the ocean. 

二氧化碳與海水發生反應,增加海水的酸度,這有害漁業和水產養殖業的發展,也危及生物和生態系統服務,包括糧食安全。這還損及保護海岸線的珊瑚礁,也衝擊到旅遊業。

隨著海洋的 pH 值降低,意即酸度增加,它從大氣中吸收二氧化碳的能力也會下降。 

CO2 reacts with seawater and increases its acidity. It endangers organisms and ecosystem services, including food security, by endangering fisheries and aquaculture. It also affects coastal protection by weakening coral reefs, which shield the coastline and encourage tourism.

As the pH of the ocean decreases, meaning that its acidity increases, its capacity to absorb CO 2 from the atmosphere also declines. 

下圖呈現全球海洋平均酸鹼值持續下降,朝酸化方向前進,而在過去26,000年未曾如此。

Global mean ocean pH has been steadily declining to rates not seen for at least the past 26,000 years: 


海冰縮減   Sea Ice Extent

冰凝結大於15%的海域是評量海冰覆蓋的範圍。

海冰可以作為氣候變化的指標,特別是衡量北極冰域變化的速率有多快,以及其覆蓋範圍大小的影響。

Sea ice extent measures areas covered by an ice concentration greater than 15%.

It serves as a useful indicator of climate change particularly given how quickly change occurs in the Arctic and how widespread the repercussions of its cover can be. 

北極海冰範圍變化  Arctic Sea Ice

2021年6月至7月初,拉普捷夫海和東格陵蘭海地區的海冰範圍迅速減少。 結果,北極海冰範圍在7月上半創下歷史新低。 9 月份夏季結束最低值則非歷史低點。

Sea-ice extent decreased very rapidly in June and early July 2021 in the Laptev Sea and East Greenland Sea regions. As a result, the Arctic-wide sea-ice extent was record low in the first half of July. The ultimate seasonal minimum in September was above record lows.   

  43年觀測史的前15名最小範圍紀錄都在2007至2021年的連續15年裡。2021年北極夏季冰域範圍是史上第12低。  Arctic Sea Ice Reaches 2021 Minimum Extent NASA Finds 2021 Arctic Summer Sea Ice 12th-Lowest on Record 

從1978年開始觀測北極冰域範圍變化以來,發現冰域有明顯縮小的趨向。43年觀測史的前15名最小範圍紀錄都在2007至2021年的連續15年裡。

The average September minimum extent record shows significant declines since satellites began measuring consistently in 1978. The last 15 years (2007 to 2021) are the lowest 15 minimum extents in the 43-year satellite record.  

2個觀測機構統計1979至2021年3月(北極冬季末)與9月(北極夏季末)結冰範圍的變化(與1981-2010之平均值比較),可以看出海冰範圍雖有增減,但整體是以縮小的趨勢進行。(直軸是結冰範圍,橫軸是年代)

Explore the levels of maximum and minimum sea ice extent values in the Arctic from 1979-2021.  Source: EUMETSAT OSI SAF v2p1 and National Snow and Ice Data Center (NSICD) v3. 

南極冰域範圍變化  Antarctic Sea Ice 

2021年,整個南大洋的海冰範圍普遍低於1981-2010年的平均值,2月的最低值相對較低,但在夏季融化季節的範圍接近平均值。

Sea-ice extent across the Southern Ocean was generally below 1981–2010 mean throughout 2021, with a relatively low February minimum but near-average conditions during the summer melt season.  

南極海冰在2021年8月30日達到當年最大面積1880萬平方公里,雖然接近平均值,但這是史上第二個最早月份產生的最大面積值(譯按:因為還不是冬季末),另一次當年度最大面積值發生在8月的是2016年。

Antarctic sea ice reached its maximum annual extent of 18.80 million km2 on 30 August 2021. Though close to the average extent, this was the 2nd earliest maximum, with only one other maximum having occurred in August (that of 2016).  

 不同觀測機構統計1979年至2021年的3月(南極夏季末)與9月(南極冬季末)結冰範圍的變化(與1981-2010之平均直比較),可以看出海冰範圍雖有增減,但整體範圍還算穩定。不過2000年後的增減幅度震盪較大。(直軸是結冰範圍,橫軸是年代) 

Explore the levels of maximum and minimum sea ice extent values in the Antarctic from 1979 to 2021. Source: EUMETSAT OSI SAF v2p1 and National Snow and Ice Data Center (NSICD) v3. 

格陵蘭冰蓋範圍變化  Greenland Ice Sheet

2021年是格陵蘭冰蓋第25年持續縮小。2021年7月下旬和2021年8月的氣溫和融水徑流量遠高於正常值。

8月14日在冰蓋最高點「峰頂觀測站」記錄到有史以來的首次降雨。

2021 marked the 25th year in a row of negative mass balance of the Greenland ice sheet. Temperatures and meltwater runoff were well above normal in late July and August 2021.

On August 14, rain was observed for the first time on record at Summit Station, the highest point on the Ice Sheet. 


冰川消融狀況   Glacier Mass Balance 

包括冰原在內的冰川分布在全球各地,主要集中在亞洲、北美洲和南美洲的高山山脈。作為生態系統服務的提供者和全世界數百萬人的淡水供應者,冰川消融對全球氣候和永續發展都產生了重大而直接的影響。

Glaciers, including ice sheets, are distributed across the planet, with concentrations in the high mountain ranges of Asia, and North and South America. As providers of ecosystem services and freshwater supply to millions around the world, the glacial loss has significant and direct impacts on both the global climate and sustainable development.  

 瑞士阿爾卑斯山脈「斯坦因冰川」,2006(左)對照2015(右)。  Stein Glacier-Switzerland, 2006(left) 2015(right)-James Balog

根據來自全球32個參考冰川的數據,2021年冰川的消融量相對於近幾年來說是少的。不過,在數十年的時間尺度上,卻看到明顯快速流失的趨勢。

Based on data from 32 reference glaciers around the world, glaciers in 2021 lost less mass than in recent years. However, there is a clear trend towards an acceleration of mass loss on multi-decadal timescales.

全球32冰川1950-2021年一路消融趨勢,且速度愈來愈快。 

加拿大西部特別嚴重的冰川消融   Exceptional Glacier Mass Loss in Western Canada

2021年異常溫暖乾燥的夏季加劇了加拿大不列顛哥倫比亞省南部、阿爾伯塔省和美國太平洋西北部大多數冰川消融。

在不列顛哥倫比亞省的海岸山脈,普萊斯和赫爾姆冰川在2020-2021年期間消失的量是從1965年開始測量以來最多的一年。

2021年夏季廣泛的區域野火產生的顆粒沉積物(包括煙灰和灰燼)覆蓋在冰川表面,7月和8月吸收的陽光比平時多,導致冰川嚴重的消融損失。

An exceptionally warm, dry summer in 2021 exacerbated mass loss for most glaciers in southern British Columbia, Alberta, and the US Pacific Northwest.

In the Coast Mountains of British Columbia, Place and Helm glaciers lost more mass during the period 2020-2021 than in any year since measurements began in 1965.

Particulate deposition – including soot and ash – from extensive regional wildfire activity in the summer of 2021, meant that the surfaces of the glaciers were unusually dark in July and August and absorbed more sunlight than usual, contributing to the extreme mass loss. 

野火產生的顆粒沉積物(包括煙灰和灰燼)覆蓋在加拿大落磯山脈冰川表面,大地一片灰黑色,吸收更多的陽光熱量,造成冰川消融特別嚴重。(攝影:Ben Pelto) 


極端氣候事件   Extreme Events  

全球氣溫上升引發了世界更頻繁、更嚴重的極端氣候事件,包括寒潮、熱浪、洪水、乾旱、野火和風暴。

Rising global temperatures have contributed to more frequent and severe extreme weather events around the world, including cold and heat waves, floods, droughts, wildfires, and storms.  

 2021全球氣候狀況報告網頁有全球主要氣候災變互動地圖,呈現旱澇、熱浪、洪水與寒潮等極端事件的資料。按圖示會顯現地點與事件說明、統計資料等。 

北美西部的夏季熱浪造成該地區的山地冰川損失,喀斯喀特、南部海岸和洛磯山脈的損失尤大。加拿大不列顛哥倫比亞省西南部一些冰川的損失則是有儀器記錄以來(1965-2021)最多的一次。

The summer heat wave in western North America took a toll on the region’s mountain glaciers, with exceptional mass losses in the Cascade, southern Coast, and the Rocky Mountains. Mass loss at some glaciers in southwestern British Columbia was the greatest in the instrumental record (1965-2021). 

6月和7月間,北美西部曾多次受到異常熱浪的影響。位於不列顛哥倫比亞省中南部的利頓在6月29日達到了49.6°C,打破加拿大之前的全國高溫紀錄46.6°C。僅僅在6月20日至7月29日期間,不列顛哥倫比亞省就報告了569起與高溫有關的死亡事件。

Exceptional heatwaves affected western North America on several occasions during June and July. Lytton, in south-central British Columbia, reached 49.6 °C on 29 June, breaking the previous Canadian national record by 46.6 °C. 569 heat-related deaths were reported in British Columbia alone between 20 June and 29 July. (譯按:延伸訊息「2021/06/30  June ends with exceptional heat」)

西歐在7月中旬經歷了有紀錄以來最嚴重的洪水。受災最嚴重的地區是德國西部和比利時東部,7月14日至15日,這些地區大面積降雨量為100至150毫米。德國Wipperfürth-Gardenau的單日最高降雨量為162.4毫米。多條河流遭遇特大洪水,多個城鎮淹水,還發生多處山崩。德國179人死亡,比利時死亡36人,德國的經濟損失超過200億美元。

Western Europe experienced some of its most severe flooding on record in mid-July. The worst-affected area was western Germany and eastern Belgium, where 100 to 150 mm fell over a wide area on 14-15 July over wet ground. The highest daily rainfall was 162.4 mm at Wipperfürth-Gardenau (Germany). Numerous rivers experienced extreme flooding, with several towns inundated, and there were also several landslides. 179 deaths were reported in Germany and 36 in Belgium, with economic losses in Germany exceeding US$20 billion. 


風險與衝擊   Risks & Impacts 

對永續發展的衝擊    Impacts on Sustainable Development

大氣中二氧化碳濃度的增加對氣候變遷六個關鍵指標產生連帶效應,使氣候暖化持續下去,並促成高衝擊事件,危及永續發展目標SDGs)的實現。例如,北極海冰的消融就會導致更多的極端事件產生。

Rising atmospheric CO2 concentrations lead to cascading effects via six of the other key climate indicators that perpetuate warming and contribute to high-impact events, risking the achievement of the Sustainable Development Goals (SDGs).

For example, did you know that changing sea ice in the Arctic can have an effect on extreme events? 

二氧化碳濃度增加對氣候變遷六大關鍵指標的連鎖反應並影響永續發展目標  

糧食安全   Food Security

在2020年營養不良人口的高峰期(7.68億人)之後,曾預測全球饑餓人數會在2021年下降到7.1億左右(9%)。但是,截至2021年10月,許多國家的數字已經高過2020年的數字。 

Following a peak in undernourishment in 2020 (768 million people), projections indicated a decline in global hunger to around 710 million in 2021 (9%). However, as of October 2021, the numbers in many countries were already higher than in 2020. 

東非旱情   Drought in East Africa

東非中部和南部地區2021年第一季的收成受到長期乾旱的影響,尤其是在肯亞,官方估計玉米產量比平均水平少了42-70%。

The 2021 first season harvest along central and southern areas of East Africa has been negatively affected by prolonged droughts, mostly in Kenya where maize outputs have been officially estimated to be 42-70% below average.  

反聖嬰現象   La Niña

2020至21年反聖嬰現象期間的極端氣候改變了降雨季節,擾亂了世界各地的生計和農業活動。

在加勒比地區,海地遭受了地震、不規律降雨和政治不穩定的三重打擊,農業損失不斷增加,糧食不安全狀況顯著惡化。

Extreme weather during the 2020/21 La Niña altered rainfall seasons, disrupting livelihoods and agricultural campaigns across the world.

In the Caribbean, Haiti has been triply hit by earthquakes, irregular rains, and political instability, increasing agricultural damage and significantly worsening food insecurity. 

埃洛伊絲氣旋    Cyclone Eloise

埃洛伊絲氣旋於1月底在莫三比克登陸,當時正值該地區的歉收季節(這時極為脆弱),受影響的社區才剛從兩年前的伊黛氣旋災害中復甦。

超過441,000人受到氣旋的影響,超過45,000公頃的農田毀損。 

Eloise made landfall in Mozambique in late January, during the region’s lean season–when vulnerabilities were at their highest and affected communities still recovering from Cyclone Idai barely two years ago.

More than 441,000 people were affected by the cyclone and more than 45,000 hectares of cropland were destroyed. 

乾旱加劇了本已脆弱的環境   Drought exacerbating already fragile contexts

近東的乾旱使穀物產量降至低於平均水準,加劇了對脆弱環境中農業和糧食安全的影響,尤其是阿富汗和敘利亞地區。 

Drought conditions in the Near East reduced cereal production to below-average levels, exacerbating the impacts on agriculture and food security in fragile contexts, mostly in Afghanistan and the Syrian Republic.  

中國暴雨   Heavy rain in China

2021年7月中旬,華中地區遭受暴雨襲擊,造成重大生命傷亡和財產損失。 這引發了中國對糧食供應的擔憂,因為100萬公頃的農田(主要是玉米、大豆和花生)受到影響,其中三分之一被夷為平地。

Central China was hit by torrential rains in mid-July 2021, leading to significant loss of life and damage to property. This sparked concerns over the potential impact on the nation’s food supplies, as 1 million hectares of cropland – mostly corn, soybeans, and peanuts –were affected, a third of which were wiped out.  

總之,新冠肺炎大流行進一步加劇了因軍事衝突、極端氣候事件和經濟衝擊的複合影響,導致飢餓人口增加,破壞了幾十年來在改善全球糧食安全上取得的進展。

Overall, the compounded effects of conflict, extreme weather events, and economic shocks,
further exacerbated by the COVID-19 pandemic, have led to a rise in hunger, undermining
decades of progress towards improving global food security.  

 全球營養不良人口數與百分比圖(左軸及橘色線是百方比,右軸及深灰色線是人口數,橫軸是年度) 


流離失所   Displacement

極端氣候事件和結果在2021年對人口流離失所以及對那些可憐無家可歸的人都產生了重大而多樣的影響。 從阿富汗到中美洲,乾旱、洪水和其他極端氣候事件正在打擊那些最沒有能力復原和適應的人。

Extreme weather events and conditions have had major and diverse impacts on population displacement and on the vulnerability of people already displaced throughout the year. From Afghanistan to Central America, droughts, flooding, and other extreme weather events are hitting those least equipped to recover and adapt.  

乾旱和洪水 Drought and floods

乾旱和洪水影響了奈及利亞的農業活動,導致東北部因軍事衝突而已經流離失所的人們再度失去了住所,並更為脆弱受苦。這狀況在2021年上半年進一步惡化,據報導,2021年1月至6月期間新增了約294,000人無家可歸。

在東非,特別是索馬利亞和伊索比亞,許多受災最嚴重的人就生活在過度擁擠和不安全的收容營地裡,許多新近因洪水而無家可歸的人也搬到了那裡。 莊稼被沙漠蝗蟲毀壞的農民也被迫遷移以尋求生存援助。

Drought and floods affected agricultural activities in Nigeria, resulting in loss of shelter and increased vulnerability of people already displaced by conflict in the northeast. The situation further deteriorated in the first half of 2021, with around 294,000 new displacements reported between January and June 2021.

In East Africa, especially in Somalia and Ethiopia, many of the worst affected were already living in overcrowded and insecure camps for internally displaced people, to which many newly flood-displaced people also moved. Farmers whose crops were devastated by desert locusts were also forced to move in search of survival assistance. 

熱帶風暴和氣旋   Tropical Storms & Cyclones

1月,查蘭熱帶風暴和隨後的埃洛伊斯氣旋帶來的強風和洪水,破壞或摧毀了莫三比克8,700多個早已流離失所的家庭的避難所,以及學校和醫院。

In January, strong winds and floods from Tropical Storm Chalane and then Cyclone Eloise damaged or destroyed the shelters of over 8,700 already internally displaced families as well as schools and hospitals in Mozambique.  

季風雨   Monsoon rains

2021年6月,季風雨導致孟加拉發生大規模洪水,加上亞斯氣旋之後導致數百萬人流離失所。在考克斯巴扎爾的羅興亞難民營,超過6,000個避難棚遭到破壞,超過25,000名難民被迫在公共設施或其他家庭尋求庇護。

Monsoon rains led to massive flooding in Bangladesh and the displacement of millions of people following Cyclone Yaas in June 2021. In the Rohingya refugee sites in Cox’s Bazar, over 6,000 shelters were damaged and more than 25,000 refugees were forced to seek shelter in communal facilities or with other families.  

漫長、無止境和反覆的流離失所 Protracted, prolonged & repeated displacement

由於原籍(和返回)或定居地的風險持續或不斷增加,而水文氣象和氣候事件也可能會使人反復和頻繁地流離失所,甚至在一次次災情與衝擊之間幾乎沒有時間復原。

這種情況凸顯了備災和風險管理的重要性,同時也有助於支持針對流離失所的永續解決方案及人們的復原力,否則他們的生活條件可能會因反復發生的災害和流離失所而逐漸受到侵蝕。

Due to continuing or growing risk in their areas of origin (and return) or settlement, people who have been displaced by hydro-meteorological and climatic events may also be subject to repeated and frequent displacement, leaving little time for recovery between one shock and the next.

Such situations highlight the importance of disaster preparedness and risk management, but also for supporting solutions to displacement that are sustainable and supporting the resilience of people who might otherwise see their living conditions progressively eroded through repeated disasters and displacement.   


生態系統   Ecosystems

生態系統——包括陸地、淡水、沿海和海洋生態系統——以及它們提供的服務,都受到氣候變化的影響,其中一些生態系統比其他生態系統更脆弱。

生態系統正以前所未有的速度退化,侷限了它們支持人類福祉的能力,也損害了它們的調適能力。

Ecosystems – including terrestrial, freshwater, coastal and marine ecosystems – and the services they provide, are affected by the changing climate and some are more vulnerable than others.

Ecosystems are degrading at an unprecedented rate, limiting their ability to support human well-being and harming their adaptive capacity to build resilience. 

山地生態系   Mountain Ecosystems

山地生態系——世界的水塔——很脆弱,由於調適力低,可能會受到氣候變化的深沉影響,同時影響到生活在山區的190萬人。

氣候變化可能會加劇水資源壓力,特別是在降水減少和地下水已經枯竭的地區,會影響農業生產、耕地,以及超過20億已經面臨水資源壓力的人口。

Mountain ecosystems – the water towers of the world – are vulnerable and can be profoundly affected by climate change due to their low capacity to adapt. This may affect the 1.9 million people living in mountain areas.

Climate change may exacerbate water stress, especially in areas of decreased precipitation and where groundwater is already being depleted, affecting agricultural production, arable land, and the more than 2 billion people who are already experiencing water stress. 

生物多樣性喪失與滅絕   Biodiversity Loss & Extinction

物種豐富度和分布的重大變化可能反過來影響物種之間的相互作用。 氣候變化也加劇了對生物多樣性的其他威脅。

隨著全球氣溫上升,預估滅絕的物種數量將急劇增加——升溫2°C時比升溫1.5°C時多滅絕30%

Substantial changes in species abundance and distribution may in turn affect the interactions between species. Climate change also exacerbates other threats to biodiversity.

The number of species projected to go extinct increases dramatically as global temperatures rise – and is 30% higher at 2 °C warming than at 1.5 °C warming. 

北極生態系   Arctic Ecosystems

氣候變化正在引發格陵蘭和南極冰蓋的解體,增加了北冰洋在夏季無冰的可能性,進一步擾亂了海洋環流和北極生態系統。

Climate change is triggering the disintegration of the Greenland and Antarctic ice sheets and increasing the chances of the Arctic Ocean being ice-free in the summer, further disrupting ocean circulation and the Arctic ecosystem. 

沿海和海洋生態系統   Coastal & Marine Ecosystems

氣溫上升增加了海洋和沿海生態系不可逆的損失風險,包括海草床和海帶林。

珊瑚礁特別容易受到氣候變化的影響。 在升溫1.5°C時,預估將失去原覆蓋面積的70%至90%,在2°C時則將失去99%以上。

Rising temperatures heighten the risk of irreversible loss of marine and coastal ecosystems, including seagrass meadows and kelp forests.

Coral reefs are especially vulnerable to climate change. They are projected to lose between 70 and 90% of their former coverage area at 1.5 °C of warming and over 99% at 2 °C.


我們能做什麼?   What can we do?

氣候正在以前所未有的方式發生變化,但仍有許多選擇可以透過「減緩」和「適應」來減輕影響。

The climate is changing in unprecedented ways, but there are still many options to alleviate the impacts through mitigation and adaptation. 

調適   Adaptation

隨著極端氣候事件更頻繁與更激烈,氣象預測必須超前瞭解天氣將如何變化及其結果。

預警系統讓人們知道危險天氣就要來臨,並告知政府、社區和個人如何採取行動以儘量減輕即將發生的影響。

As extreme weather events become more frequent and intense, predictions must go beyond what the weather will be to include what the weather will do.

Early Warning Systems allow people to know hazardous weather is on its way and informs how governments, communities, and individuals can act to minimize the impending impacts.  

然而,世界上三分之一的人口,主要是最不發達國家和小島嶼發展中國家,仍然沒有預警系統。

在非洲,情況更糟:60%的人口不在預警系統範圍內。

為應對這一挑戰,聯合國秘書長安東尼奧·古特雷斯已責成世界氣象組織,努力確保地球上的每一個人在五年內受到預警系統的保護。

However, one-third of the world’s people, mainly in the least developed countries and small island developing states, are still not covered by early warning systems.

In Africa, it is even worse: 60% of people lack coverage.

To face this challenge, UN Secretary-General António Guterres has tasked the World Meteorological Organization to lead the effort to ensure every person on Earth is protected by early warning systems within five years. 

減緩    Mitigation

然而,即使調適性有所提升,除非根本的驅動因素得到解決,否則氣候將繼續發生變化。

根據聯合國政府間氣候變化專門委員會的說法,如果不立即在所有環節和地區進行深度減排(溫室氣體),就不可能將升溫控制在1.5°C以下。

幸運的是,每個人都可以做到。您將如何努力限制(溫室氣體)排放呢?

However, even if adaptation is improved, the climate will continue to change unless the underlying drivers are addressed.

According to the IPCC, without immediate and deep emissions reductions across all sectors and regions, it will be impossible to keep warming below 1.5° C.

Fortunately, there are ways for everyone to take their part. How could your sector work toward limiting emissions?


 

延伸閱讀

2023年氣候概覽與北極報告摘要及影片、圖片(中英對照)

2022年北極報告摘要及影片、圖片(中英對照)

從1951-2020年地表溫差曲線圖看地球發燒(影片)

2020年氣候統計及30秒看地球141年逐漸發燒狀況(影片、圖片、數據)

2020年北極報告摘要(中英對照)

預測2100年地球火熱一片

2019年氣候統計及30秒看地球140年逐漸發燒狀況(影片、圖片、數據) 

2020至2024年這五年中,地球將可能再創高溫紀錄(中英對照)

地球愈來愈熱已經不是太陽給熱的問題(動畫、圖片)

北極冰況消融危機持續惡化-2018北極報告摘要(影片、相片、數據)-中英對照

從衛星看地球生物圈20年(影片)

本網誌「氣候變遷」、「環境保護」、「生態保育」、環保旅館專欄各文  

分享文章

發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *